Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Journal of Physics a-Mathematical and Theoretical ; 56(23), 2023.
Article in English | Web of Science | ID: covidwho-20241171

ABSTRACT

Since the outbreak of COVID-19, the severe acute respiratory syndrome coronavirus 2 genome is still mutating. Omicron, a recently emerging virus with a shorter incubation period, faster transmission speed, and stronger immune escape ability, is soaring worldwide and becoming the mainstream virus in the COVID-19 pandemic. It is especially critical for the governments, healthcare systems, and economic sectors to have an accurate estimate of the trend of this disaster. By using different mathematical approaches, including the classical susceptible-infected-recovered (SIR) model and its extensions, many investigators have tried to predict the outbreaks of COVID-19. In this study, we employed a novel model which is based upon the well-known susceptible-infected-removed (SIR) model with the time-delay and time-varying coefficients in our previous works. We aim to predict the evolution of the epidemics effectively in nine cities and provinces of China, including A City, B City, C City, D City, E City, F City, G City, H City and I Province. The results show it is effective to model the spread of the large-scale and sporadic COVID-19 induced by Omicron virus by the novel non-autonomous delayed SIR compartment model. The significance of this study is that it can provide the management department of epidemic control with theoretical references and subsequent evaluation of the prevention, control measures, and effects.

2.
International Journal of Biomathematics ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-20239212

ABSTRACT

In this paper, an SIRS epidemic model using Grunwald–Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the population during the outbreak of deadly infectious diseases. The criteria for the spread or extinction of the disease are derived and discussed on the basis of the basic reproduction number. The condition for the existence of Hopf bifurcation is discussed considering fractional order as a bifurcation parameter. Additionally, using the Grunwald–Letnikov approximation, the simulation is carried out to confirm the validity of analytic results graphically. Using the real data of COVID-19 in India recorded during the second wave from 15 May 2021 to 15 December 2021, we estimate the model parameters and find that the fractional-order model gives the closer forecast of the disease than the classical one. Both the analytical results and numerical simulations presented in this study suggest different policies for controlling or eradicating many infectious diseases. [ FROM AUTHOR] Copyright of International Journal of Biomathematics is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
Pers Ubiquitous Comput ; : 1-13, 2020 Nov 06.
Article in English | MEDLINE | ID: covidwho-20243229

ABSTRACT

The world is currently facing a pandemic called COVID-19 which has drastically changed our human lifestyle, affecting it badly. The lifestyle and the thought processes of every individual have changed with the current situation. This situation was unpredictable, and it contains a lot of uncertainties. In this paper, the authors have attempted to predict and analyze the disease along with its related issues to determine the maximum number of infected people, the speed of spread, and most importantly, its evaluation using a model-based parameter estimation method. In this research the Susceptible-Infectious-Recovered model with different conditions has been used for the analysis of COVID-19. The effects of lockdown, the light switch method, and parameter variations like contact ratio and reproduction number are also analyzed. The authors have attempted to study and predict the lockdown effect, particularly in India in terms of infected and recovered numbers, which show substantial improvement. A disease-free endemic stability analysis using Lyapunov and LaSalle's method is presented, and novel methods such as the convalescent plasma method and the Who Acquires Infection From Whom method are also discussed, as they are considered to be useful in flattening the curve of COVID-19.

4.
Infect Dis Model ; 8(2): 562-573, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2328344

ABSTRACT

On December 7, 2022, the Chinese government optimized the current epidemic prevention and control policy, and no longer adopted the zero-COVID policy and mandatory quarantine measures. Based on the above policy changes, this paper establishes a compartment dynamics model considering age distribution, home isolation and vaccinations. Parameter estimation was performed using improved least squares and Nelder-Mead simplex algorithms combined with modified case data. Then, using the estimated parameter values to predict a second wave of the outbreak, the peak of severe cases will reach on 8 May 2023, the number of severe cases will reach 206,000. Next, it is proposed that with the extension of the effective time of antibodies obtained after infection, the peak of severe cases in the second wave of the epidemic will be delayed, and the final scale of the disease will be reduced. When the effectiveness of antibodies is 6 months, the severe cases of the second wave will peak on July 5, 2023, the number of severe cases is 194,000. Finally, the importance of vaccination rates is demonstrated, when the vaccination rate of susceptible people under 60 years old reaches 98%, and the vaccination rate of susceptible people over 60 years old reaches 96%, the peak of severe cases in the second wave of the epidemic will be reached on 13 July 2023, when the number of severe cases is 166,000.

5.
Water Res ; 241: 120098, 2023 Aug 01.
Article in English | MEDLINE | ID: covidwho-2328161

ABSTRACT

(MOTIVATION): Wastewater-based epidemiology (WBE) has emerged as a promising approach for monitoring the COVID-19 pandemic, since the measurement process is cost-effective and is exposed to fewer potential errors compared to other indicators like hospitalization data or the number of detected cases. Consequently, WBE was gradually becoming a key tool for epidemic surveillance and often the most reliable data source, as the intensity of clinical testing for COVID-19 drastically decreased by the third year of the pandemic. Recent results suggests that the model-based fusion of wastewater measurements with clinical data and other indicators is essential in future epidemic surveillance. (METHOD): In this work, we developed a wastewater-based compartmental epidemic model with a two-phase vaccination dynamics and immune evasion. We proposed a multi-step optimization-based data assimilation method for epidemic state reconstruction, parameter estimation, and prediction. The computations make use of the measured viral load in wastewater, the available clinical data (hospital occupancy, delivered vaccine doses, and deaths), the stringency index of the official social distancing rules, and other measures. The current state assessment and the estimation of the current transmission rate and immunity loss allow a plausible prediction of the future progression of the pandemic. (RESULTS): Qualitative and quantitative evaluations revealed that the contribution of wastewater data in our computational epidemiological framework makes predictions more reliable. Predictions suggest that at least half of the Hungarian population has lost immunity during the epidemic outbreak caused by the BA.1 and BA.2 subvariants of Omicron in the first half of 2022. We obtained a similar result for the outbreaks caused by the subvariant BA.5 in the second half of 2022. (APPLICABILITY): The proposed approach has been used to support COVID management in Hungary and could be customized for other countries as well.


Subject(s)
COVID-19 , Wastewater , Humans , Hungary/epidemiology , Pandemics , COVID-19 Testing , Immune Evasion , COVID-19/epidemiology , Disease Outbreaks
6.
Iranian Journal of Fuzzy Systems ; 20(3):159-175, 2023.
Article in English | Academic Search Complete | ID: covidwho-2322961

ABSTRACT

One of the useful distributions in modeling mortality (or failure) data is the univariate Gompertz–Makeham distribution. To examine the relationship between the two variables, the extended bivariate Gompertz–Makeham distribution is introduced, and its properties are provided. Also, some reliability indices, including aging intensity and stress-strength reliability, are calculated for the proposed model. Here, a new copula function is constructed based on the extended bivariate Gompertz–Makeham distribution. Some of its features including dependency properties, such as dependence structure, some measures of dependence, and tail dependence, are studied. The estimation of the parameters of new copula is presented, and at the end, a simulation study and a performance analysis based on the real data are presented. So, by analyzing the mortality data due to COVID-19, the appropriateness of the proposed model is examined. [ FROM AUTHOR] Copyright of Iranian Journal of Fuzzy Systems is the property of University of Sistan & Baluchestan and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

7.
Archives of Disease in Childhood ; 108(6):A7-A8, 2023.
Article in English | ProQuest Central | ID: covidwho-2322408

ABSTRACT

IntroductionFavipiravir selectively inhibits RNA polymerase responsible for single-stranded viral replication. It is licensed for treating influenza and repurposed to treat other diseases such as Ebola and COVID-19. It is metabolised by hepatic aldehyde oxidase (AO) and is an AO inhibitor with complex pharmacokinetics. We have used favipiravir, in combination with other antivirals, in severely immunocompromised children with life-threatening RNA virus infections. As an unlicensed indication, favipiravir pharmacokinetics were routinely monitored at our institution. Population pharmacokinetic model is used to describe the favipiravir pharmacokinetic properties, drug exposure and sources of variability in these children.MethodsRoutine favipiravir plasma levels of 9 patients (0.8–11yrs, mean age=5.3yrs;median weight=15kg) were analysed retrospectively (62 samples). All patients received favipiravir 200mg or 400mg tds and had at least one plasma level 45min (peak), 3h and 8h (trough) post-dose. Parameter estimation and model simulation properties (visual predictive check) were assessed using R language (v 4.1.2) and RStudio (2022.02.0+443).ResultsA one-compartment model with weight as covariate best describes the data, with (1) elimination clearance=1L/h and volume of distribution=7.54L, both allometric scaled centring at median weight, and (2) estimated t1/2=5.17h with Cmax = 24µg/mL at 200mg and 41µg/mL at 400mg.ConclusionsTo our knowledge this is the first report of favipiravir pharmacokinetic parameters in infants and young children. Weight significantly improves the model fit as a covariate. Reported EC50 for norovirus in vitro was 19–39µg/mL and enterovirus 71 was 23µg/mL, indicating higher favipiravir doses or combination with other antivirals are required.

8.
AIMS Mathematics ; 8(7):16926-16960, 2023.
Article in English | Scopus | ID: covidwho-2321564

ABSTRACT

Monkeypox is an emerging zoonotic viral disease resembling that of smallpox, although it is clinically less severe. Following the COVID-19 outbreak, monkeypox is an additional global health concern. The present study aims to formulate a novel mathematical model to examine various epidemiological aspects and to suggest optimized control strategies for the ongoing outbreak. The environmental viral concentration plays an important role in disease incidence. Therefore, in this study, we consider the impact of the environmental viral concentration on disease dynamics and control. The model is first constructed with constant control measures.The basic mathematical properties including equilibria, stability, and reproduction number of the monkeypox model are presented. Furthermore, using the nonlinear least square method, we estimate the model parameters from the actual cases reported in the USA during a recent outbreak in 2022. Normalized sensitivity analysis is performed to develop the optimal control problem. Based on the sensitivity indices of the model parameters, the model is reformulated by introducing six control variables. Based on theoretical and simulation results, we conclude that considering all suggested control measures simultaneously is the effective and optimal strategy to curtail the infection. We believe that the outcomes of this study will be helpful in understanding the dynamics and prevention of upcoming monkeypox outbreaks. © 2023 the Author(s), licensee AIMS Press.

9.
Math Biosci Eng ; 20(6): 11281-11312, 2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2327329

ABSTRACT

This study explores the use of numerical simulations to model the spread of the Omicron variant of the SARS-CoV-2 virus using fractional-order COVID-19 models and Haar wavelet collocation methods. The fractional order COVID-19 model considers various factors that affect the virus's transmission, and the Haar wavelet collocation method offers a precise and efficient solution to the fractional derivatives used in the model. The simulation results yield crucial insights into the Omicron variant's spread, providing valuable information to public health policies and strategies designed to mitigate its impact. This study marks a significant advancement in comprehending the COVID-19 pandemic's dynamics and the emergence of its variants. The COVID-19 epidemic model is reworked utilizing fractional derivatives in the Caputo sense, and the model's existence and uniqueness are established by considering fixed point theory results. Sensitivity analysis is conducted on the model to identify the parameter with the highest sensitivity. For numerical treatment and simulations, we apply the Haar wavelet collocation method. Parameter estimation for the recorded COVID-19 cases in India from 13 July 2021 to 25 August 2021 has been presented.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Computer Simulation
10.
Fuzzy Optimization and Decision Making ; 22(2):195-211, 2023.
Article in English | ProQuest Central | ID: covidwho-2320665

ABSTRACT

Uncertain hypothesis test is a statistical tool that uses uncertainty theory to determine whether some hypotheses are correct or not based on observed data. As an application of uncertain hypothesis test, this paper proposes a method to test whether an uncertain differential equation fits the observed data or not. In order to demonstrate the test method, some numerical examples are provided. Finally, both uncertain currency model and stochastic currency model are used to model US Dollar to Chinese Yuan (USD–CNY) exchange rates. As a result, it is shown that the uncertain currency model fits the exchange rates well, but the stochastic currency model does not.

11.
Journal of Statistical Computation & Simulation ; 93(7):1207-1223, 2023.
Article in English | Academic Search Complete | ID: covidwho-2316078

ABSTRACT

The state-space model is a powerful statistical tool to estimate linear or non-linear discrete-time dynamic systems. This model naturally leads to the estimation problem of the time-varying parameters of the discovery-time demographic version of the susceptible-infected-recovered (SIR) model that we consider. In this paper, we consider computational methods to perform Bayesian inference on state-space models for analysing time-series data. We compare the three popular Bayesian computational methods for state-space models: the adaptive Metropolis-within-Gibbs algorithm, Liu and West's algorithm and variational approximation method based on Gaussian distributions. The performances of the three methods are compared based on synthetic datasets. Furthermore, we analyse the trend of the spread of COVID-19 in South Korea to point out the limitations of existing methods and derive meaningful results. [ FROM AUTHOR] Copyright of Journal of Statistical Computation & Simulation is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

12.
Mathematics ; 11(8):1812, 2023.
Article in English | ProQuest Central | ID: covidwho-2305886

ABSTRACT

Model checking methods based on non-parametric estimation are widely used because of their tractable limiting null distributions and being sensitive to high-frequency oscillation alternative models. However, this kind of test suffers from the curse of dimensionality, resulting in slow convergence, especially for functional data with infinite dimensional features. In this paper, we propose an adaptive-to-model test for a parametric functional single-index model by using the orthogonality of residual and its conditional expectation. The test achieves model adaptation by sufficient dimension reduction which utilizes functional sliced inverse regression. This test procedure can be easily extended to other non-parametric test methods. Under certain conditions, we prove the asymptotic properties of the test statistic under the null hypothesis, fixed alternative hypothesis and local alternative hypothesis. Simulations show that our test has better performance than the method that does not use functional sufficient dimension reduction. An analysis of COVID-19 data verifies our conclusion.

13.
Axioms ; 12(4):327, 2023.
Article in English | ProQuest Central | ID: covidwho-2304627

ABSTRACT

Modeling real-life pandemics is very important;this study focuses on introducing a new superior flexible extension of the asymmetric Haq distribution known as the power Haq distribution (PHD). The most fundamental mathematical properties are derived. We determine its parameters using ten estimation methods. The asymptotic behavior of its estimators is investigated through simulation, and a comparison is done to find out the most efficient method for estimating the parameters of the distribution under consideration. We use a sample for the COVID-19 data set to evaluate the proposed model's performance and usefulness in fitting the data set in comparison to other well-known models.

14.
Sustainability (Switzerland) ; 15(7), 2023.
Article in English | Scopus | ID: covidwho-2304322

ABSTRACT

Pandemic fatigue has threatened the efforts to contain the coronavirus disease 2019 (COVID-19) worldwide;thus, government-mandated preventive measures have declined. The Japanese government has implemented several methods to address COVID-19′s spread, including hand hygiene, mask requirements, and social distancing. This study is the first to examine the socioeconomic factors affecting Japan's decline in COVID-19 prevention measures. It utilized the Preference Parameters Study of the Osaka University Institute of Social and Economic Research data of the 2021 and 2022 waves. With approximately 1580 observations, we detected a 10%, 4%, and 13% decline in hand hygiene practice, mask-wearing, and social distancing, respectively, between January 2021 and January 2022. Men were more likely to dislike the hand hygiene practice and mask-wearing and were also more reluctant to maintain social distancing. Moreover, financially satisfied individuals were positively associated with a decrease in the hand hygiene practice, while those with greater assets were more likely to dislike maintaining social distancing. People who exercised regularly were less likely to abandon the hand hygiene practices. Our results highlighted the significance of selective prevention programs targeting specific groups to promote compliance and lead to more effective pandemic management and less fatigue or discontentment. © 2023 by the authors.

15.
Mathematics ; 11(8):1772, 2023.
Article in English | ProQuest Central | ID: covidwho-2304222

ABSTRACT

Zero-and-one inflated count time series have only recently become the subject of more extensive interest and research. One of the possible approaches is represented by first-order, non-negative, integer-valued autoregressive processes with zero-and-one inflated innovations, abbr. ZOINAR(1) processes, introduced recently, around the year 2020 to the present. This manuscript presents a generalization of ZOINAR processes, given by introducing the zero-and-one inflated power series (ZOIPS) distributions. Thus, the obtained process, named the ZOIPS-INAR(1) process, has been investigated in terms of its basic stochastic properties (e.g., moments, correlation structure and distributional properties). To estimate the parameters of the ZOIPS-INAR(1) model, in addition to the conditional least-squares (CLS) method, a recent estimation technique based on probability-generating functions (PGFs) is discussed. The asymptotic properties of the obtained estimators are also examined, as well as their Monte Carlo simulation study. Finally, as an application of the ZOIPS-INAR(1) model, a dynamic analysis of the number of deaths from the disease COVID-19 in Serbia is considered.

16.
Energies ; 16(7):3126, 2023.
Article in English | ProQuest Central | ID: covidwho-2303996

ABSTRACT

The increasing number of electric vehicles is forcing new solutions in the field of charging infrastructure. One such solution is photovoltaic carports, which have a double task. Firstly, they enable the generation of electricity to charge vehicles, and secondly, they protect the vehicle against the excessive heating of its interior. This article presents the functioning of a small carport for charging an electric vehicle. Attention is drawn to the problems of selecting the peak power of the photovoltaic system for charging an electric vehicle. An economic and energy analysis is carried out for the effective use of photovoltaic carports. In this article, we present the use of the Metalog family of distributions to predict the production of electricity by a photovoltaic carport with the accuracy of probability distribution.

17.
Mathematics ; 11(8):1925, 2023.
Article in English | ProQuest Central | ID: covidwho-2302242

ABSTRACT

This study presents a novel approach for simulating the spread of the Omicron variant of the SARS-CoV-2 virus using fractional-order COVID-19 models and the Haar wavelet collocation method. The proposed model considers various factors that affect virus transmission, while the Haar wavelet collocation method provides an efficient and accurate solution for the fractional derivatives used in the model. This study analyzes the impact of the Omicron variant and provides valuable insights into its transmission dynamics, which can inform public health policies and strategies that are aimed at controlling its spread. Additionally, this study's findings represent a significant step forward in understanding the COVID-19 pandemic and its evolving variants. The results of the simulation showcase the effectiveness of the proposed method and demonstrate its potential to advance the field of COVID-19 research. The COVID epidemic model is reformulated by using fractional derivatives in the Caputo sense. The existence and uniqueness of the proposed model are illustrated in the model, taking into account some results of fixed point theory. The stability analysis for the system is established by incorporating the Hyers–Ulam method. For numerical treatment and simulations, we apply the Haar wavelet collocation method. The parameter estimation for the recorded COVID-19 cases in Pakistan from 23 June 2022 to 23 August 2022 is presented.

18.
Omics Approaches and Technologies in COVID-19 ; : 275-290, 2022.
Article in English | Scopus | ID: covidwho-2301884

ABSTRACT

In this chapter, we describe the use of mathematical and simulation tools applied in various aspects of the coronavirus disease 2019 pandemic through an extensive and careful review of the recently published works. We detailed the existing implementations of models dealing with (i) the spread of the disease, (ii) the prediction of new outbreaks, (iii) the existence of new variants of the virus, (iv) the effects on the at-risk population, (v) the long-term health consequences, (vi) the resource allocation for supportive staffs and clinical beds, (vii) the dynamics of transmission and how to cut the transmission chain, (viii) the impacts of travel restrictions, social distancing and early detection, (ix) the efficacy of prophylactic agents, (x) the effects of optimum interventions, (xi) the impact of existing vaccines, and (xii) the economic effects of the pandemic. © 2023 Elsevier Inc. All rights reserved.

19.
Textile Research Journal ; 2023.
Article in English | Scopus | ID: covidwho-2298810

ABSTRACT

Currently a new type of coronavirus is raging around the world, and many countries have relaxed the control of the epidemic. Wearing a mask has become the best self-protection measure for people to travel. Intercalated melt-blown nonwoven materials are in short supply as filter layers for daily-worn masks. This paper studies the relationship between the process parameters and structural variables of intercalated melt-blown nonwoven materials, and creatively uses machine learning-related algorithms to solve its nonlinear relationship. The optimized back propagation neural network model is the most suitable in this field, and the goodness of fit can reach more than 99.99%. Based on various limitations of actual industrial production, this model is used to traverse the process parameters, and the intercalated melt-blown nonwoven material is obtained. The best process parameters, in which the receiving distance is 27 cm, and the hot air velocity is 890 r/min, in this case, the thickness and porosity of the material produced are very low, while the compression resilience is very high, considering the filtration efficiency of the mask and comfort. © The Author(s) 2023.

20.
Journal of Inverse and Ill-Posed Problems ; 2023.
Article in English | Scopus | ID: covidwho-2298210

ABSTRACT

The problem of identification of unknown epidemiological parameters (contagiosity, the initial number of infected individuals, probability of being tested) of an agent-based model of COVID-19 spread in Novosibirsk region is solved and analyzed. The first stage of modeling involves data analysis based on the machine learning approach that allows one to determine correlated datasets of performed PCR tests and number of daily diagnoses and detect some features (seasonality, stationarity, data correlation) to be used for COVID-19 spread modeling. At the second stage, the unknown model parameters that depend on the date of introducing of containment measures are calibrated with the usage of additional measurements such as the number of daily diagnosed and tested people using PCR, their daily mortality rate and other statistical information about the disease. The calibration is based on minimization of the misfit function for daily diagnosed data. The OPTUNA optimization framework with tree-structured Parzen estimator and covariance matrix adaptation evolution strategy is used to minimize the misfit function. Due to ill-posedness of identification problem, the identifiability analysis is carried out to construct the regularization algorithm. At the third stage, the identified parameters of COVID-19 for Novosibirsk region and different scenarios of COVID-19 spread are analyzed in relation to introduced quarantine measures. This kind of modeling can be used to select effective anti-pandemic programs. © 2023 Walter de Gruyter GmbH, Berlin/Boston 2023.

SELECTION OF CITATIONS
SEARCH DETAIL